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SECTION 1.

INTRODUCTION AND SUMMARY

1.1 BACKGROUND

Deep basing concepts attempt to increase the survivability

of strategic reserve forces or command systems by placing such

facilities several thousand feet underground, depending on atten-

uation in the geologic media to reduce the ground shock from

nuclear bursts on or near the surface to acceptable levels.

In homogeneous media, the depths required to attenuate peak

overstresses to a given level have been estimated by Cooper' from

underground test data:

1J3 1P2 1/3 1/2
Hard rock: W a < D 2W a (1)

max - max

1/3 1/2 V 1/ 2
Soft rock: 0.4W < D < 0.3W a (2)max ~max

where

W = yield (Mt) of a shallow-buried burst

a max= peak overstress level (kb)

D = depth (kft)

For a shallow burst of W = 7.5 Mt and a peak overstress level of

G max = 1.5 kb, the estimated depths are:

In hard rock: D = 1600-3200 ft (500-1000 m)

In soft, dry rock: D = 650-1300 ft (200-400 m)

An optimum deep basing geology might consist of a relatively

thin hard rock surface layer (to discourage use of earth pene-

trators), over a thick, fairly uniform layer of dry, porous soft
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rock (to provide rapid shock attenuation), over a hard bedrock

(to provide structural resistance). A geology of this nature can

be found, for example, in Idaho and eastern Oregon, where a basalt

flow overlies a thick pumice layer over a hard bedrock2 . Suitable

geologies without the surface rock are common in the Southwest.

The occurrence of dry, porous sites with promising shock

attentuation characteristics (with or without the surface rock)

does not, however, assure that such sites are available nor desir-

able for deep basing. Alternative geologies may be preferable for

operational or other practical reasons. The existence of support

facilities, for example, may make it desirable to locate deep base

facilities at or near existing Minuteman sites, providing that the

deep facility is survivable in Minuteman geologies. These typi-

cally consist of multiple layers of shales and softer sedimentary

rocks over a hard basement at 2000-4000 feet (600-1200 m). Unfor-

tunately, the water table in generally shallow, and ground shock

attenuation through saturated porous media is more gradual than in

dry porous media. There is some question whether Minuteman

geologies, or any other saturated porous geologies, are practical

for deep basing, since stresses sufficient to destroy structures

(say m > 1.5 kb) may be experienced to unacceptably large depths.max

The distinct stratigraphic layering at typical Minuteman sites,

however, may provide an additional mechanism to reduce the stresses

at depths. There are fairly large impedence mismatches between

layers which will produce some lateral diffraction of stress waves,

leading to more rapid stress wave attenuation with depth. Whether

or not the degree of diffractional attenuation in such geologies

will be sufficient to reduce the ground shock environment at

practical depths to tolerable levels is the key technical question

addressed herein.
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SECTION 2.

APPROACH

2. 1 GEOLOGIC PROFILES

Three finite difference calculations were performed of the

stress wave propagation and ground motions beneath a 7.5 Mt shallow-

buried burst, using the geologic profiles in Figure 1, and the

properties in Figure 2. The detailed material models are described

in the Appendix. The basic profile (Case 1) contains several

layers of saturated, soft sedimentary rock above a hard bedrock.

Its dimensions and properties were constructed using data provided

by J. Zelasko of Waterways Experiment Station.

In Case 1, the major geologic layers were separately defined

in the computational grid, and all the layers were totally saturated

(i.e., there was no air-filled porosity).

In Case 2, layers between the surface layer and the bedrock

were homogenized into a single layer having wegqhted-average

properties. Comparisons between the layere-d vs homogenized models

in Case 1 vs Case 2 permit assessment of the effects of reflection

and diffraction processes at interfaces upon stress attentuation

beneath the burst.

Even in nominally-saturated porous media, there is probably a

-mall amount of air entrapped in cracks and pores. To assess the

possible importance of such air-filled porosity, 1 hysteretic

compaction in the soft rock layers above the bedrock was specified

in Case 3.

2.2 SOURCE CONDITIONS

in selecting the burst condition, it was assumed that a 30-Mt

surface burst would be a credible threat against a deep-based

facility. To avoid the need for calculating the details of energy

coupling from such a surface burst, it was further assumed that a

5
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surface burst produces the same ground motion effects as a shallow-

buried burst of 1/4th the yield 2 . The source was therefore repre-

sented as 7.5 Mt of energy uniformly distributed in a 6-m radius

sphere of Layer 1 material centered 10 m below the surface. This

gave an initial pressure of 140 Mb. The effects of airblast on

the surface were modeled by application of the Brode overpressure

function to the upper boundary of the grid, using W = 7.5 Mt.

2.3 NUMERICAL METHOD

The three 2-D problems were run using the CRALE (California

Research Arbitrary Lagrangian-Eulerian) code, an axisymmetric

finite-differencing time-marching program. In this code, the grid

motion algorithm allows the user to rezone the grid points each

cycle in order to maintain reasonable zone sizes and shapes. For

the problems in this study, the initially vertical lines were

required to remain vertical. The initially horizontal interfaces

separating layers were treated as Lagrangian grid lines, i.e., the

grid lines were displaced as the interfaces deformed. Between

these interfaces, the initially horizontal grid lines moved so as

to remain equally spaced. Thus, material was transported across

grid lines within each layer, but not across interfaces. Material

at the ground surface moving upward at high velocity was allowed

to pass through the top of the grid.

8



SECTION 3.

RESULTS

3.1 DEVELOPMENT OF GROUND MOTIONS

Development of the ground motions is illustrated by the

velocity vector fields in Case 1 at 78 and 123 msec after the

burst. By 78 msec (Figure 3), the main shock front is approxi-

t mately 1000 ft from the source and the peak stress is about 7.5 kb.

At this time, the layering does not appear to significantly affect

the propagation of the diverging wave. By 123 msec (Figure 4),

the main shock has reached a depth of about 1500 ft and the peak

stress has attenuated to about 4 kb. The layering is still not

significantly perturbing the shock front, but there is some rota-

tion of particle velocities behind the shock just below the 705 ft

interface, due to differences in the yield condition in materials

above and below that interface.

The velocity field at 113 msec for Case 2, in which layers

between 410 ft and the bedrock at 2300 ft were homogenized, show

a very pronounced interface effect at 410 ft depth (Figure

5). This is because the homogenization of properties for layers

below 410 ft led to a relatively large mismatch of properties

across that interface (see Figure 2). In particular, stresses

were still sufficient to cause yielding above that interface (where

the Mises yield surface, Y =0.1 kb), but were insufficient to

produce yielding in the much stronger material below the interface

(in which Y = 1.5 kb). The result is a discontinuity in particle

velocities. In addition, the substantially higher wave velocity

beneath the interface led to the outrunning condition which is

evident in Figure 5. These phenomena at the shallow interface did

not, however, substantially affect the stresses and ground motions

at depth.

9
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3.2 STRESS, VELOCITY, AND DISPLACEMENT WAVEFORMS BENEATH BURST

The similarity of basic ground motions beneath the burst in

the three geologic profile cases is illustrated by comparing the

near-axis stress, velocity, and displacement histories in the soft

rock at 1300 ft depth and in the bedrock at 2460 ft depth.

At the station in the soft rock (Figure 6), there are only

minor differences between the waveforms. At the deeper station

(Figure 7), the effects of the large mismatch of properties at

the bedrock interface in the homogenized profile (Case 2) results

in a sharper, somewhat stronger stress pulse entering the bedrock.

Peak displacements in the homogenized profile, by contrast, are

somewhat lower than in the corresponding layered profile (Case 1).

In the layered geology with 1% hysteretic compaction (Case 3),

stresses and velocities drop more quickly, due to the higher

velocity of relief .*aves in the hysteretic model. Displacements

in Case 3 are therefore smaller.

Peak stresses vs depth for near-axis locations are shown in

Figure 8. Diffe'rences between the three caoe .rc relatively ainch

at all deptho. At depths down to the bedrock interface at 2300 ft,

the calculated stresses attenuate approximately as the square of

the depth, i.e, a max a D . In the layered geology (case 1), stresses

incident upon the bedrock are slightly higher than in the homogenized

geology (Case 2), but the smoother match of properties across the

softrock-bedrock interface in Case 1 results in lower stresses

entering the bedrock, and this difference persists. Thus layering

in media above the bedrock (as in Case 1) reduces the stresses in

the bedrock (as compared with homogeneous media), but only by

10-15%.

The introduction of 1% hysteretic compaction to account for

a small degree of air-filled porosity does not significantly affect

the peak stress vs depth.

13



-Case 1 Basic layered profile

-- Case 2 Homogenized profile

--------------------Case 3 Basic layered profile,
5.0-j with 1% hysteretic

1/' compaction

S2.5 1/~

so /

2.0-

I'

1004



Case 1 Basic layered profile

rN -Case 2 Homogenized profile
---- Case 3 Basic layered profile,

with 1% hysteretic
2.0 compaction

1.0

2.50

1.05

10 10 0 20A0

505



A-~ I

I~I I I I I I I I I 16



7
7-

I-.

I I I I I I

0~
cJ

~~U> ~

U)
U) I -

w

4J
cJ~

U)

-4

I,

16

ii - I- ~- ---



Figure 9 shows peak stress contours for the three cases.

Comparison of Cases 1 and 2 shows that layering reduces the maximum

depths and ranges in the bedrock at which damaging peak stresses

are experienced, but not by significant margins. For example, when

there is an unlayered medium above the bedrock, 1.5 kb peak stresses

are experienced to a maximum of 2705 ft depth, and to a maximum

range (from the axis) in the bedrock of 1310 ft. When there is

layered media above the bedrock, 1.5 kb peak stresses extend only

to 3345 ft depth, and to 1150 ft range in the bedrock. With 1%

hysteresis in the layered media, the maximum depth is further reduced

to 3180 ft, and the maximum range in the bedrock to 1000 ft.

Figure 10 shows peak displacements. The differences are small,

except in the 1% hysteretic geology (Case 3), where much smaller

displacements occur in the bedrock. This is because the unloading

arrives relatively sooner in the hysteretic geology, thereby short-

ening the downward pulse.
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SECTION 4.

CONCLUS IONS

The three parameters Peak stress ener 1.5 kb peak
defined in the sketch are bedrock at srs otu

2300 ft srs otu
used to summ~arize key_______________

findings of the analyses

in the following tabu-

lation.

Max. depth exper- Max. raijge in
iencing oax h edrork exper-
1.5 kb i encing

a max 1.5 kb

Peak Stress Max. Depth Max. Range
Entering Experiencing in Bedrock
Bedrock a max =1. 5kb Experiencing

Gax = 1.5 kb

Case 1. Basic layered, 2.6 kb 3345 ft 1150 ft
saturated profile (1020 m) (350 m)

Case 2. Homogenized 2.9 kb 3705 ft 1310 ft
media above bedrock (1120 mn) (400 mn)

Case 3. Same as Case 1,
but with 1% hysteretic 2.4 kb 3180 ft 1000 ft
compaction (970 m) (305 m)

20



The trends seen in this tabulation are as would be expected;

sedimentary layering or hysteretic compaction will indeed reduce

stresses on a deep facility beneath a near-surface burst. However,

the dif'ferences are relatively small, of' the order of' 10-15%

Futhermore, the calculated maximum depths where 1.5 kb peak

stresses are experienced in geologies with saturated, layered soft

rocks over deep bedrock correspond roughly with the deepest values
predicted from empirical data for stress attenuation in hard rock

(Equation 1).

The following conclusions are drawn from these results:

1. The effects of layering, involving typical
differences in properties between sedimentary,
saturated soft rock layers, do not substantially
reduce peak stresses beneath near-surface bursts.

2. Deep base facilities located in geologies consis-
ting of saturated layers of sedimentary soft rock
above deep bedrock (typical of Minuteman sites)
would need to be placed at depths equivalent to
those required in hard rock geologies.

21
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APPENDIX

GEOLOGY AND MATERIAL MODELING

Case 1. Representative Saturated Layered Geology

The dimensions and properties for the representative satur-

ated layered profile for Case 1 in Figure 1 were constructed using

data provided by J. Zelasko of Waterways Experiment Station (WES)3.

Typically there are several layers at shallow depths; we chose to
model these using a single homogeneous surface layer extending

down to 125 m because the very strong shock waves from the burst
in this region would not be significantly affected by the relatively

small impedence mismatches.

The interfaces between layers were assumed to be welded.*

The soil layers and bedrock were modeled with an updated
version of the Schuster-Isenberg equations of state used exten-

sively in nuclear and chemical explosive cratering studies.

Basically, the stress-energy-strain behavior is decomposed into a

mean stress or pressure relationship plus the deviatoric stress

tensor. The mean stress is further decomposed into two terms, i.e.,

P = P + P (Al)

where Ps represents the solid or liquid phases and Pv the vapor.

Hysteresis, low-energy thermal effects, and reversible solid-solid

phase changes are incorporated into the calculation of Ps.

* Differential displacements across interfaces in a layered media
pose separate hazards to structures which penetrate through
such interfaces; this aspect of siting in layered media was not
considered in the current study.
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For non-hysteretic materials,

Ps = KmV - (Km-Ko)p* (l-e - / P * ) (A2)

where K and Km are the initial and maximum bulk moduli, * is a

material parameter, and

=-P excess compression

Po

The thermal energy dependence of the solid is incorporated by

adding the effect of thermal expansion to P so that it becomes

V+aE, where $ is the coefficient of thermal expansion and E the

energy density. This is equivalent to the Grunisen correction used

in other models, with a variable Grunisen gamma. At a solid-solid

phase change, the effective 11 is again altered to reflect the

decrease in dP/dp. Hence p is replaced by P-vIA where

PA = (VI-VI ) (A3)

and 6 and Ip are phase change parameters.

The vapor term, Pv' is computed using a variable gamma-law gas,

Pv = (y-l)pE* (A4)

where

y-1 = .4 + .23 log p + [.35 log(E*/p) - .464]2 (A5)

and E* is an effective energy density,

-EEm  
E-e

E* 1e (EEm) (A6)

4E < Em

i 24



Incremental deviatoric stresses are computed from changes

in the deviatoric strain tensor using the elastic equation

do!. = -2Gde! (A7)

where the shear modulus G is assumed to be constant. The second

invariant of the deviatoric stress tensor, V2, is then compared

to a von Mises type plastic yield surface, Y. If VT' exceeds Y,
2

the material has yielded and the deviatoric stresses are reduced

by the standard Drucker-Prager flow rule, i.e., without volumetric

strain.

Values of the constants for the materials in each layer are

listed in Table A-1. To assure correctness of seismic speeds in

the various layers, the constrained moduli and Poisson's Ratio

provided by Zelasko were used to determine the zero pressure moduli

in the equations of state. However, the bulk modulus in each layer

increased exponentially with compression to a single high pressure

(> 100 kbar) value consistent with the available Hugoniot data.

Case 2. Partially Homogenized Geology

For Case 2, layers 2, 3, and 4 were homogenized and given

the weighted average properties for density, bulk moduli, and

sound speed shown in Table A-1. To verify that these average

properties would give approximately the same waveform incident to

the bedrock interface at 700 m depth as the explicitly modeled

layer properties used for Case 1, comparative 1-D spherical

analyses were run. The results shown in Figure Al indicate that

both models produce the same nominal waveform in a spherically

diverging geometry; any differences in the 2-D solutions of Cases 1

and 2 can therefore be attributed to the diffractional effects

of the interface planes.
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Case 3. Near-Saturated Layered Geology

Even in nominally-saturated porous media, there is probably

a small amount of air entrapped in cracks and pores. To assess

the possible importance of such air-filled porosity, 1% hysteretic

compaction in Layers 1-4 was allowed in Case 3. To retain the

basic characteristics of the Case 1 materials, the loading moduli

and hence the sound speeds were not changed. Upon unloading,

however, K0 in Equation A2 was replaced by K' (Table A-l) so that0

the effective modulus was much higher and the material returned

to zero pressure at a density up to 1% higher than initial density,

as shown in this sketch.

PO 1.01 p 0

The value of Pm' the minimum pressure required to collapse all

of the air-filled voids increased with the depth of the layers

(Table A-l) to be consistent with the increase in the initial

loading moduli.
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